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E I G E N O S C I L L A T I O N S  N E A R  A PLATE IN A C H A N N E L  

S. V. Sukhinin UDC 517.947+534.14+534.2 

Acoustic eigenoscillations of a gas near a plate in a rectangular channel, i.e., the eigenfrequencv 
of oscillations as a function of the chord length and the position of the plate in the channel, and 
the form of the eigenfunctions are studied in a two-dimensional formulation. A mathematical 
model of eigenoscillations near a plate in a channel has been proposed and substantiated, and 
the dependence of the eigenfrequency of oscillations on the geometric parameters is studied 
numerically with the use of this model. 

The problem of acoustic oscillations of a gas near a plate in a channel was first formulated in [1-4]. 
In addition, a mathematical model that describes the self-excited acoustic and electromagnetic oscillatibns 
near the obstacle of an arbitrary structure was completely substantiated theoretically, and the existence of 
eigenfrequencies of oscillations within the framework of the proposed model has been shown. The author 
proved [4] that the symmetry-breaking of the knife grating does not change its resonance properties. 

The presence of the continuous spectrum of frequencies, which corresponds to the generalized 
eigenfunctions, is the main difficulty in the description of eigenoscillations in unbounded media. This difficulty 
was overcome in [4] by means of the Fredholm analytical theorem. The existence of eigenoscillations was 
shown, and the form of these oscillations was examined. Similar propositions obtained by different methods 
were proved by Evans and Linton [5]. 

1. FORMULATION OF THE PROBLEM 

Equat ions  Descr ib ing  Acoust ic  Oscillations. Figure 1 shows the geometry of the acoustic region 
divided into subregions 1-4. The potential u(z ,y , t )  of an acoustic velocity perturbation is assumed to be 
periodically time-dependent: u(z, y, t) = u(z, y)exp (/cot). The equation for the potential of acoustic velocity 
perturbation u(~, () is of the form 

u~. + ur162 + ,~2u = 0 in f/, (1.1) 

where fl is the region occupied by the gas. The dimensionless frequency A and variables ~ and ( are expressed 
via the dimensional frequency A = Hca/c and variables ~ = z / H  and ( = y /H,  where c is the velocity of 
sound, H is the height of the channel, and ~o is the circumferential frequency of acoustic oscillations. 

In dimensionless variables, the channel width equals 1, and to the plate length L corresponds the 
dimensionless quantity I -- L / H ,  which characterizes the length of the plate profile relative to the channel 
height. 

The following Neumann conditions should be satisfied at the channel wall B and the plate profile F: 

u r  on F + B .  (1.2) 
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Fig. 1. Geometry of the region of eigenoscillations 
near the profile in the channel: F is the profile 
of length L, H is the channel height, B are the 
channel walls, h is the distance from the plate to 
the lower wall of the channel, (p, ~,) are the polar 
coordinates with the origin at the profile edge, and 
1-4 refer to the subregions fL 

According to the physical content of the problem, the condition of energy finiteness should be satisfied 
in the entire region of oscillations for the function u: 

E(u) = f l u  2 + (Vu) 2] d• < cr (1.3) 

n 

where E(u) has the sense of energy oscillations. 
Rad ia t i on  C o n d i t i o n s  and  Con t inuous  S p e c t r u m .  It is convenient to choose the coordinate 

system (~, r such that the coordinate origin is at the lower wall of the channel and the r axis intersects the 
plate profile in the center. The channel walls B can be described by the relations B = {r = 0, 1}, and the 
profile F can be presented as a set on the plane (~, (): F = {( = h, -1 /2  <~ ~ <<. 1/2}, where h is the distance 
from the plate to the lower wall of the channel. 

Def in i t ion  1.1. The solution of Eq. (1.1) is assumed to be subject to the radiation condition if the 
following representations are true for a rather large number R (R > L]2) and all {(~, (),  I~1 >/R}: 

= - R,  
n=O 

+c~ (1.4) 
= r .< - n .  

n = 0  

Here and below, the dimensionless length of the plate profile l is denoted by L for convenience. 
ff the function is subject to the radiation condition, it either damps or increases in the general case as 

the exponent with distance from the coordinate origin (the obstacle). This condition was thoroughly discussed 
in [1--4]. 

In addition, it is assumed that, for all A 2 < (rrt) 2, a branch of the square root such that 

ix /A2-  (lrn) 2 < 0 is chosen, and c~ (+) and c(,= -) are assumed to be complex numbers such that the series 
(1.4) converge. In the class of functions that are subject to the radiation condition, problem (1.1) and (1.2) 
is the Fredholm problem [2], and it has nontrivial solutions only for a discrete (at a certain Riemann surface) 
set A* of values of the parameter X in the Helmholtz equation (1.1). In [1-4], the values of X* E A* are 
called quasi-eigenvalues of this problem, and the solutions u.,  which correspond to the values of X*, are called 
quasi-eigenfunctions. They are localized in the neighborhood of the plate and can cause resonance phenomena. 
In the case where the energy of quasi-eigenoscillations is infinite [E(u.)  < oo], the function u. describes the 
classical eigenoscillations. They are localized in the plate's neighborhood and can cause resonance phenomena. 
In the case where the energy of quasi-eigenoscillations is infinite, the physical meaning of oscillations is not 
clear. 
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For integer n and all ~ (bXl > ,-~), the functions of the form Y~ = cos (~rn ( )exp( - i~$  2 -(~rn) 2) 
describe the generalized eigenwaves with unlimited energy in an empty channel. From the viewpoint of the 
theory of self-conjugate operators, this means that the corresponding self-conjugate extension of the Laplace 
operator A has a continuous spectrum which occupies the entire nonnegative section of a real straight line. 
The numbers ,~2 correspond to the generalized eigenvalues of this extension of the operator A. To the classical 
eigenvalues corresponds the operator's purely point spectrum imbedded into a continuous spectrum. 

Defini t ion 1.2. Henceforth, the generalized eigenwaves in a channel that are described by the function 
Y0 = exp (iA~) are called piston modes. 

R e m a r k  1.1. The piston mode is the generalized eigenfunction of a channel with and without a plate. 
This is due to the fact that the functions describing piston modes do not depend on the variable (" whose 
direction is perpendicular to the channel's axis (see Fig. 1). If there is a plate in the channel and it is parallel 
to the channel walls, the form of the functions that describe the generalized eigenwaves in this structure can 
be significantly different from the form of the generalized eigenwaves of an empty channel. 

Res t r ic t ion  of t he  Class of Punctions.  The operator that corresponds to the problem of 
eigenoscillations near a plate in a channel is of a continuous spectrum coinciding with the positive semi- 
axis of real numbers, which complicates the study of eigenvalues. The restriction of the space of permissible 
solutions can shift the lower boundary a0 of the continuous spectrum from the coordinate origin. This permits 
us to employ the known variational methods of determining the eigenvalues in the interval [0, a0]. 

In what follows, problem (1.1)-(1.4) is called a problem of eigenoscillations (EO). The space of 
admissible solutions of this problem is the space of functions with local finite energy in the region f~/F; 
it is denoted by Hs. 

Defini t ion 1.3. The value of the parameter A for which the nontrivial solution u* subject to (1.3) 
exists is called an eigenvalue ,~* of the EO problem. The function u* is called an eigenfunction of the EO 
problem. 

It is noteworthy that the eigenvalues and functions of the EO problem make it possible to describe 
completely the acoustic resonance phenomena near a plate in a channel, the eigenvalues are imbedded into a 
continuous spectrum, and the piston mode Y0 = exp (i/~() is the generalized eigenfunction of the EO problem. 

Two approaches are possible to examine eigenoscillations: 
(1) If the EO problem possesses mirror symmetry relative to the middle of a channel, the condition 

of antisymmetry relative to the middle of the channel {((, t2), ~ = 1/2} is added. This condition enables 
us to exclude the piston mode from the space of admissible solutions of the EO problem. In this approach, 
the continuous spectrum of the self-conjugate extension of the operator - A ,  which corresponds to the EO 
problem, equals Ix 2, co). The approach is not substantiated if the position of the plate in the channel is 
arbitrary. 

(2) Another approach was used in [4]. The term that corresponds to the piston mode was shown 
not to exist in the radiation condition (1.4) for the eigenfunction of the EO problem. The existence of the 
eigenvalues of the EO problem was proved for an arbitrary position of a long enough profile with the use of the 
Fredholm analytical theorem. Central to the proof is the circumstance that the piston mode is the generalized 
eigenfunction of the EO problem. 

In these approaches, the restriction of the space of admissible solutions of the EO problem leads to 
a variation of the continuous spectrum and the appearance of a purely point spectrum of the corresponding 
operator. The first approach uses the symmetry of the problem, and the second approach uses the fact that 
piston modes are the generalized eigenfunctions of the gO problem. The latter approach is more general. 
According to the results of the theory of self-conjugate operators, the eigenfunctions have a zero projection in 
the corresponding space of functions onto an arbitrary piston mode because it is a generalized eigenfunction. 
Therefore, if the eigenfunction u* .of the EO problem exists, it should be subject to the necessary condition 
for all the values of )~: 

[ [ = o. 
El l ' l  
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The condition will be satisfied for all the values of A if and only if, for all the values of (, the identity 

1 

J ,,'(C dr - o (1.5) 
0 

holds, which restricts the space Hs of admissible solutions of the problem to the space Ho (Ho C Hs), which is 
a subspace of Hs. With condition (1.5) satisfied for all the values of ~, the EO problem is called a problem of 
orthogonal eigenoscillations (OEO). The continuous spectrum which corresponds to the OEO problem is the 
se t  o" 1 = [ r  2, r on the real semi-axis. In view of this, the OEO eigenvalues are searched for in the interval 

R e m a r k  1.2. The  ant isymmetry conditions for the eigenfunctions of the variable r relative to the 
plate is a partial case of conditions (1.5). 

2. E X I S T E N C E  AND F O R M  OF E I G E N F U N C T I O N S  

The form of the eigenfunctions far from the plate is described using the radiation and energy-finiteness 
conditions. 

For a deep insight into the mechanics of eigenoscillations and the development of algorithms .for 
numerical analysis, it is necessary to know the form of the eigenfunction in the neighborhood of the profile 
edges. 

F o r m  of  t h e  E i g e n f u n c t i o n  in t he  N e i g h b o r h o o d  of  a P l a t e .  It is important  to examine the 
form of eigenfunctions in the neighborhood of the edges of a plate. The physical prerequisites are as follows: 

(a) the energy in the neighborhood of an edge is finite; 
(b) the edge does not radiate. 
R e m a r k  2.1. These prerequisites are equivalent to each other, and they are a consequence of the 

finiteness condition for the energy of eigenoscillations (1.3). 
In the neighborhood of the profile edge, the solution u* of the EO (or OEO) problem is of the form [6] 

=  onst (2.1) 

Here p is the distance from the edge in the neighborhood of which the form of the solution is examined to the 
point (~, ~'), and ~ is the angle measured from the lower boundary of the profile for the vector (~ - L/2,  ~ - h) 
in studying the neighborhood of the leading edge or for the vector (~ + L/2,  r - h) in studying the trailing 
edge (see Fig. 1). 

In the region f t /F ,  the solution u of the EO (or OEO) problem can be considered smooth enough, and 
it can, therefore, be represented in the region ft as 

u = Ud + uc, (2.2) 

where Ud is the discontinuous function on the set of points F which describes the profile and ur is the continuous 
function in the entire region Ft. 

P r o p o s i t i o n  2.1. Each solution of the EO problem is representable in the form (2.2). The function ud 
is continuous at the profile edge, in regions 3 and 4, and on the right and on the left from the profile Ud = 0 
(see Fig. 1), and it can be written in the form 

{ u f((), ((,() E I, (2.3) Ud = (u--  1)f(~), (~,~) E 2 

in regions 1 and 2 and above and below the profile. 
In the case where the function Ud is subject to the orthogonality condition for a piston mode (1.5) and 

the coordinates are dimensionless, the equality u = h holds. 
P roof .  By reductio ad absurdum. Let u+ be the ult imate value of the function ud for ~ ~ h + 0, and 

u_ be its ult imate value for ~" ~ h - 0. Then the function f(~) = u+ - u_ describes the discontinuity intensity 
at the profile of the function ud, and representation (2.3) holds. If the continuity is violated at the points 
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ti and tz, i.e., at the profile edges, condition (2.1), which is a consequence of the energy-finiteness condition 
(1.3), is not satisfied. The expression for the constant v is derived from the orthogonality condition (1.5). It 
is worth mentioning that Ud is allowed not to be subject to the energy-finiteness condition. The proposition 
is proved. 

Corollary 2.1. There is no discontinuity in the velocity potential at the profile edges, and f(~)  = 0 
for ~ = L/2 and ~ = - Z / 2 .  

We note that, with the coordinate origin chosen properly (~ = 0 is the middle of a profile), the 
OEO problem converts into itself relative to the replacement of the variables 6 ~ -6. Therefore, any 
solution u of the problem is representable as follows: u = us + ua. Here and below, us(6, r = us(-r  r 
and ua(6, ()  = --Ua(--~, ~) are the components of the solution u which are, respectively, symmetrical (even) 
and antisymmetrical (odd) in ~. Since the OgO problem is linear, the space H0 of all admissible solutions 
can be given as a direct sum of the spaces of solutions which are symmetrical Hs and antisymmetrical Ha in 
6:H0 = Hs ~ Ha. Owing to this fact and the linear character, the problem is divided into two independent 
problems for the functions which show even and odd symmetry in 6; the analysis of these functions is similar, 
and hence we shall consider the case of 6-symmetrical solutions. The respective changes for a study of the 
case of 6-odd solutions will be indicated below. 

Let ui (i = 1, . . . ,  4) be the restrictions of the solution u of the OEO problem in regions 1-4, respectively. 
In the class of 6-even functions, the general solution of the OEO problem in regions 1-3 has the form 

) u1(6, r = a0 cos(a6)  + ] ~  a ~  cos cosh - az , 
m = l  

u2( ' , ' )  : b0cos(,~6) + F.~ b ,  cos [mr(@- h)]cosh (6\/[-~--~12 - )~2) ,  (2.4) 
rn--.-- 1 

oo 

-3(6, r = co exp(i~O + ~ ck cos(~rr exp ( - 6  ~/(kr)~ - as ). 
k = l  

For 6-odd functions, the representation 

m h). sinh 6 Ul(6,~) -- a0 sin(~6) + ~ ana cos 
r n m l  

u2(6,~') = bo sin()~6)+ ~ bmcos [.mr( h)]sinh ( ,  _ ~2 ) ,  (2.5) 
rn-~-l 

oo 

us(6, r = co exp (i,~6) + ~ c, cos(krr exp ( - 6  ~/(kr) 2 - ,~z ) 
k = l  

is true. 
Conditions (1.5) will be satisfied in the case where 

c0=0 ,  a 0 ( 1 - h ) + b 0 h = 0 .  (2.6) 

For a function of the form (2.4) [or (2.5)] with conditions (2.6) to be the solution of the OEO problem, 
the continuity conditions for the solution and its normal derivative, which are called sewing conditions [7] 
should be satisfied at the boundaries of regions 1--4. Owing to the symmetry of the problem in ~, it is sufficient 
that the sewing conditions are satisfied at the boundary of regions 1-3 and 2-3. Let g(1-3) denote the boundary 
between regions 1 and 3, and g(2-s) denote the boundary between regions 2 and 3. The sewing conditions are 
of the form 

#ul 0us ~9u2 0us 
Ul = u3, - ~ - =  a6 on 9(I-,); u2 =u3, ~ = 09 6 on a(2-3)- (2.7) 

Conditions (2.7) imply that the function of the form (2.3) is a weak solution of the OEO problem in 
the Sobolev energy space. For elliptic equations, the weak solution is known to be automatically a strong 
solution. 
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E x i s t e n c e  of  E igenosc i l l a t i ons  nea r  t h e  Prof i le  of  a P l a t e  in a C h a n n e l .  To prove the 
correctness of the mathematical  description of acoustic eigenoscillations near a profile in a channel, it is 
necessary to show that  eigenoscillations are described by means of the proposed mathematical  model at least 
for some geometrical parameters.  

For this purpose, we shall consider auxiliary problems and the "Dirichlet-Neumann bracket" method 
[8]. Let the Dirichlet conditions (D) u(~, ~) = 0 for I~] = R > L/2 or the Neumann conditions (N) u~(~, ~) = 0 
for I~l = R > L/2 be satisfied, in addition to the boundary-problem conditions on the sections G = {(~, ~) : 

= R, 0 ~< ( <~ 1,R > L/2}. 
For the convenience of further considerations, the OEO problem with the additional condition D will 

be called an OEO(DR) problem, and this problem with the condition N will be called an OEO(NR) problem. 
Let ADR, UDR and ANR, UNR be the eigenvalues and eigenfunctions of the OEO(DR) and OEO(NR) problems, 
respectively. Since the condition N extends the space of admissible solutions of the OEO problem and the 
condition D restricts it, the inequalities that  can be derived using the variational formulation of the problem 
[8] hold for all R (R > L/2): 

ANR ~ A* ~< )tDR. (2.8) 

R e m a r k  2.2. If for some values of R (R >t L/2), the rigorous inequalities ANR > 0 and 0 < ADR < r 
are satisfied, the existence of the eigenvalue of the EO problem follows from relation (2.8). 

If R = L/2, the condition D is a "soft" radiation condition for oscillations in channels 1 and 2 (see 
Fig. 1). The dimensionless eigenfrequency of longitudinal oscillations ADL is calculated by the formula ADL = 
~/L. By virtue of this, to satisfy the inequality A* < ~r, it suffices that  the profile length be larger than the 
channel height (L > 1). The rigorous inequality ANR > 0 follows from condition (1.5) for R > L/2. This 
means that  the eigenvalue of the Neumann problem for the Laplace operator in the connected region 1 is 
rigorously larger than zero. 

Theorem 2.1 (the sufficient condition for the existence of eigenoscillations near a profile in a channel). 
If the dimensionless profile length L satisfies the rigorous inequality L > 1, the nontrivial eigenvalues of the 
OEO problem exist. 

Proof .  Let h -* 1 (or h --* 0), h be the ordinate of the position of the profile, and (h - 1/2) be the 
deflection of the position of the profile from the center of the channel. Then there exists the eigenfunction 
u*(~, () of the OEO(DR) problem which is localized in the region [-L]2, L]2] x [h, 1] and which has the form 

{ cos(,r~/L), (~, r e [-L/2,  L/2] • [h, 1], 
u*(~,r = ((h - 1)/h) cos(rUL), (~, r e [-L/2,  L/2] x [0, h]. 

To this eigenfunction corresponds the eigenvalue A*, which is subject to the relation A* ~ ~r/L for h --* I. For 
the case h --* 0, it is necessary to make the obvious replacements. The theorem is proved. 

The existence of eigenvalues of the problem is proved only for a sufficiently large relative length of the 
profile in Theorem 2.1. 

T h e o r e m  2.2 (the existence of eigenoscillations). There always exist eigenoscillations near a profile 
in a channel, irrespective of the length and position of the profile. 

Proof .  It suffices to show that,  for any value of L > 0, there exists R > 0 such that  the inequalities 

0 < ANR ~ A* ~ )tDR < 11" (2.9) 

hold. 
Estimate from Below. If R > L/2, we have ANR > 0 by virtue of the connected region and the 

orthogonality of the solution to the constant, because (ANR) 2 is the second eigenvalue of the Neumann problem 
for the Laplace operator in a bounded connected region. 

Estimate from Above. Let the continuous component ur of the approximate eigenfunction u in ft be of 
the form uc = cos(Tr()cos(Try/R) in the representation (2.2). 
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The discontinuous-at-the-profile component of the approximate eigenfunction (2.3) has the form 

(~ecos(Tr~/L), (~,C) E I, 
u~ = (1 - 1/h)aecos(Tr~/L), (~,C) 

where ~ is an arbitrary constant. The 
oscillations if it is extended identically 
relation 

.< jf [v( c + ()~DR) 2 

NR 

function u d can be regarded 
equal to zero outside regions 

E 2, 
as a function in the entire region of 
1 and 2. For all the values of ~e, the 

f i r  

which reflects the variational property of eigenvalues, holds, where ~R = f~ I"1 {(~, ~) : -< R}. Direct 
calculation is used to check whether the asymptotic representation 

A B R) + + 

holds for large values of R (this is because of the boundedness of the support  of the function Ud). The quantities 
A and B are ze-dependent. Since the parameters R and ze are independent,  the A value is determining for 
sufficiently large R. The  following relation holds: 

A = (L2h - L2 + 1 - h)~'2~e 2 + 8 sin(rh)Lae 
hL h 

It follows that  the values of A will be negative for sufficiently small negative values of ~e. In view of 
this, the rigorous inequality p2(ze, R) < 7r 2 holds for sufficiently large values of R and small negative values 
of 2 .  

Inequalities (2.9) hold by virtue of relation (2.10). The theorem is proved. 
R e m a r k  2.3. The  method  of proving Theorem 2.2 is, as a mat ter  of fact, based on the estimate of 

the profile-introduced perturbat ion of the eigenfunction. I t  follows that  as the profile length decreases, the 
eigenfunction increasingly "resembles" the generalized eigenfunction subject to conditions (1.5). 

R e m a r k  2.4. The  mechanics of eigenoscinations for L > 1 and L < 1 has no principal differences. 
For L < 1, the eigenfunctions can be localized between the profile and the channel walls. This fact is of 
significance for h --. 0 or h --~ 1. In this case, the eigenfunction is "squeeT~" outside from the space between 
the profile and the wall ( the smallness of the quantity ze). If L > 1, it follows from the proof of Theorem 2.1 
that  the eigenfunction is localized between the profile and the nearest channel wall for h --, 0 or h --, 1. Note 
that  the behavior of the smallest eigenvalues is discussed, unless otherwise specified. 

3. D I S C R E T I Z A T I O N  OF T H E  P R O B L E M  AND N U M E R I C A L  STUDIES  

Discretization of the  problem should take into account all its properties. The  most specific task, which 
is typical of problems of this kind alone, is making allowance for the energy-finiteness condition. If relations 
(2.7) are regarded as equalities of the Fourier series on the entire interval g(1-3) and g(2-3) with respect to the 
variable ~', they take the form of an infinite homogeneous system of equations [7]. 

The matrix elements of these equations depend analytically on the parameter  ~. This system has a 
serious disadvantage for the  numerical methods of solution on which we have to focus our attention. Additional 
conditions are needed [7] to convert the numerical solution of these equations to a solution for which the 
energy-finiteness conditions hold. In the present study, for correctness of the calculations for h = 1/2, the 
discretized relations (2.7) were supplemented by a forced energy-finiteness condition, which allows us to 
increase significantly the accuracy and speed of calculation. By virtue of Corollary 2.1, the equality 

f ,r 1 } ( a 0 - b 0 )  cos \A + ~ ( a m - b m ) c o s h  L If _~2  = 0  (3.1a) 
m=~ L 2 V L I  - hJ 
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holds at the profile edges whose oscillation modes are even along the abscissa, and the equality 
= 

( a 0 - b 0 )  sin t + ~ ( a r n - b r n ) s i n h L ~ - V  LV----yj 
r n = l  

holds for odd modes. 
Relations (3.1a) and (3.1b) have the sense of a forced satisfaction of the energy-finiteness condition at 

the profile edges for approximate eigenfunctions, and they are supplementary in eigenvalue and eigenfunction 
calculations (the number of unknown {am} and {brn} is equal). This makes it possible to use the results 
of [7] to support  numerical studies. To determine numerically the dependence of the eigenvalues and the 
eigenfunctions on the parameter  h, use was made of the generalized expansion method for the determinant. 
The known technique for the solution of infinite systems of equations in special spaces of permissible solutions 
[7] was employed to satisfy the energy-finiteness condition in discrete models. 

M e t h o d  of  D i r e c t  Fo rced  Al lowance  for  t h e  E n e r g y  F in i t enes s .  This method is used here for 
a numerical study of the dependence of the frequency of eigenoscillations on the profile length in the case 
where the profile is in the center of a channel [h = (1 - h) = 1/2]. Therefore, conditions (2.6) take the form 
a0 = -b0. If the profile is in the center of the channel, any eigenfunction u* of the OEO problem can be 
represented as a sum of two functions u* = Ua + Us where the function Us is symmetrical in the profile and 
ua is antisymmetrical. Since any eigenfunction of the OEO problem is subject to condition (1.5), one can 
consider that  the eigenfunction u* is antisymmetrical relative to the profile if it is in the center of the channel. 
To do this, one can consider that  ul = -u2  or a m  = - b i n  for all values of m. In addition, since the function 
u3 is antisymmetrical relative to the location of the profile, all the coefficients ck with even numbers are equal 
to zero in representations (2.4) and (2.5). The system of equations derived from (2.7) with condition (3.1) 
was separated and studied numerically. 

E x p a n s i o n  M e t h o d  for  t h e  D e t e r m i n a n t .  The greatest difficulty encountered in numerical analysis 
of an OEO-type problem lies in the fact that  the convergence of approximate solutions to the solution of the 
problem in the class of functions with energy-finiteness conditions at the edge should be controlled. 

Let the eigenfunctions be approximately representable in the following form for regions 1 (over the 
profile) and 2 (under the profile): 

u l ( ( ,~)  = a0 s in( l ( )  + ~ amcos s inh((am)  ' 
rn--...~l 

u2(~, r = b0 s in ( l ( )  + ~ bn cos sinh ((Bn) ' 
n----1 

a .  = V t l  - h i  - 1 2 '  / 7 .  = - 1 2 .  

These relations depend analytically on I and contain K = N + M + 1 of unknown constants a m  and 
ha, because a0 and b0 are related by condition (3.1). To determine these unknowns, we need K additional 
relations, which can be derived using conditions (2.7). As a mat ter  of fact, K partial radiation conditions 
should be satisfied for an approximate eigenfunction. Let 

K + I  

~3(~, r = ~ ck cos(k.r  exp (-~*k),  ~k = X/(k-)2 - 12. 
k = l  

Conditions (2.7) lead to the following system of relations for the unknown coefficients ck (k = 1 , . . . ,  K = 
M + N + I ) :  

1 h 

h 0 
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' ' ' o : 4 '  ' ' o : 8 '  ' o h 

Fig. 2. Frequencies of eigenoscillations versus the profile length (a) and its position 
in the channel (b): (a) solid curves refer to the results obtained by the method of 
direct forced allowance for the finite energy and points refer to the results obtained 
using relation (3.2). 

d 1 d cos(k~r~) d~}. 

o ~=LI2 h 

If ck is excluded from these relations, we derive the homogeneous system of equations with K unknown 
constants am and bn (m = 0, 1, . . . ,  M and n = 1, . . . ,  N): 

h ] 
f ( -,,'~)-~ ,__~,~ ~_ (r .~'~)  j cos(k~,r ,,2 + + ~ffiLn de = 0 (~ = 1,. , K ) .  u 2  + / cos(k#r ul ul . .  

0 h 

After the variables are replaced, the system takes the canonical form 

( ,  o-,~ ,., ( ,  o-~,-_~.~" ( ,  o-,~ 
m=l ~k + O~m ~ 1  

It was studied using the  expansion method for the determinant [7]. The  relation tha t  permits one to calculate 
approximately the  eigenfrequencies of oscillations near the profile in the channel was obtained: 

,~,~ = ~ ( L -  ~ ~ ' - " ) l "~ ' - " )  +"'"~")) - . ~ o  (.r ,~ ~/~, _ ~ ,,)~ _ ~ ) 

2~ 
' , r  - 

(3.2) 

(k is an odd number  for eigenoscillations that  are even along the ~ axis and k is an even number for odd 
oscillations). 

* 

4. N U M E R I C A L  S T U D I E S  

D e p e n d e n c e  of  t h e  F r e q u e n c y  on  t h e  L e n g t h  of  a P ro f i l e  a n d  I t s  P o s i t i o n  in a C h a n n e l .  
Figure 2a shows results of numerical studies of the frequencies of eigenoscillations versus the length of the 
plate profile. Even and odd modes alternate. Comparison of the numerical results clearly shows that  as the 
plate lengthens, the values of the frequencies of the first modes of eigenoscillations decrease, and the modes 
increase in number.  The  largest possible frequency for each mode is the lr value attainable as the profile 
length is decreased to some critical value at which the modes of eigenoscillations change in number. For the 
first mode, we have lim [~] (L)] = 7r. Figure 2b shows calculated data  on the dependence of the frequency of 

L--.0 
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Fig. 3. Effective length (for the first 
eigenfrequency) versus the profile length. 

eigenoscillations on the position of the profile for its fixed length. One should focus attention on the weak 
dependence of the frequencies on h. For h --, 0 or h ~ 1, in the case where L > 1, the ultimate transition 
A(h) ~ ~r/L is observed. If L < 1, the ultimate transition A(h) --, ~r holds. In the latter case, half the 
wavelength of eigenoscillations tends to the channel height. 

Eigenoscillations exist for any lengths and any position of the plate in the channel, and, for any fixed 
length of the plate profile, the number of the modes of eigenosciUations is finite and is determined from Fig. 
2a. 

Ef fec t ive  L e n g t h  of  a Prof i le .  Let L >> 1. If the profile length tends to infinity or the profile 
approaches the channel wall, the first dimensionless frequency of eigenoscillations near the profile A* has 
approximately the form A* ~. ~r/L. By  virtue of this, to study the mechanics of oscillations at the first 
eigenfrequency, it is convenient to introduce the notion of an effective profile length Le~, which equals half the 
wavelength of eigenoscillations (Le~ = 1r/M). By virtue of Theorems 2.1 and 2.2, the following propositions 
hold. 

Proposition 4.1 (the dependence of the effective length on the limiting length of a profile). I f  L --, O, 

we have Left ""* 1. I f  L "* co, we have Left ~ L. 
Proposition 4.2 (the dependence of the effective length on the position of a profile). Let L > 1. I f  

h ---, 0 (h ---, 1), we have L d  ~ L.  Let L < 1. l f h  ~ 0 (h --, 1), we have L ~  - ,  1. 

Let Left = x[~* = L ( I+~)  or L d f / L -  1 = ~. Figure 3 illustrates the quanti ty r versus the dimensionless 
profile length, which was obtained numerically by the method of forced allowance for energy finiteness. One 
can note the good agreement between the calculation results and the above propositions. 

Theoretical and experimental studies allows us to conclude that  there is no minimum or maximum 
profile length at which eigenoscillations are absent. 

F o r m  of  E i g e n f u n c t i o n s  a n d  D e p e n d e n c e  of  t h e  A m p l i t u d e  on  t h e  C o o r d i n a t e s .  The 
dependences of the eigenfunction on the coordinates for L = 2 and h = 1/2 were calculated using the 
method of forced allowance for energy finiteness. Figure 4a shows the amplitude under the plate for the first 
(even) mode of eigenoscillations versus the coordinates. Owing to the orthogonality of the eigenoscillations to 
the piston mode, the eigenfunction is antisymmetrical relative to the profile if it is in the center of the channel 
(the oscillations above and below the profile are in antiphase). 

F o r m  of  E igenosc i l l a t i ons  a n d  D i r e c t i o n  of  A c o u s t i c  F low Veloc i t i es .  Figure 4b shows the 
field of acoustic velocities for the first mode of eigenoscillations (the compression phase above the plate and 
the rarefaction phase below the plate). The studies allow us to clarify the mechanics of eigenoscillations near 
the profile in the channel. Figure 4b demonstrates distinctly that  the first mode of eigenoscillations is the gas 
flow from region 1 to region 2 and backward. 
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Fig. 4. Oscillation amplitude (a) in the velocity field (b) of the first mode in the 
neighborhood of the profile. 

CONCLUSIONS 

�9 A mathematical model that describes eigenoscillations near a plate in a channel has been constructed. 
The eigenoscillations have been completely studied numerically. 

�9 The dependences of the frequencies of eigenoscillations on the profile length and its position in the 
channel and the effective profile length have been studied numerically. 

�9 Eigenoscillations have been shown to exist for any lengths and positions of the profile in the channel. 
�9 The asymptotics of the eigenfrequencies as the plate approaches the channel wall and the profile 

length lengthens infinitely or shortens have been studied. In approaching the plate to the channel wall, the 
eigenfunction has been shown to be localized between the plate and the wall if the profile length is larger than 
the channel height. If its length tends to zero, the eigenfrequency of oscillations tends to the lowest frequency 
which corresponds to the admissible generalized eigenwaves in an empty channel. 

�9 The amplitude of eigenoscillations versus the coordinates has been examined. The eigenoscillations 
above and below the profile have been shown to be in antiphase. 

The author is grateful to R. M. Garipov for a helpful discussion of the work. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 

00894). 
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